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The effect of small amounts of suspended particles with small and large radii 
on the threshold of wave excitation at the surface of a liquid in a sound field 
is investigated. 

The presence of suspended particles in a water-oil emulsion results in the fact that 
the waste water from oil fields contains petroleum and oil residues with solid particles 
suspended in them. In order to utilize the waste water, it is necessary to emulsify the 
petroleum and oil residues so that the size of their particles does not exceed the dimen- 
sions of the pore channels in productive strata. Dispersers with different fragmentation 
mechanisms are used for this purpose. Thus, a hydrodynamic vibrator [I, 2] whose mechanism 
for breaking up oil drops is based on the parametric instability of a liquid in a sound 
field [2, 3] is widely used at present. 

We shall consider here the effect of a small amount of suspended particles on the dis- 
persion of a viscous liquid drop in a sound wave field. We assume that the drop radius is 
much smaller than the wavelength of sound, but also much larger than the capillary radius. 
The motion of the drop is neglected. 

The case under consideration is sufficiently well approximated by the problem of sta- 
bility of a free surface of an infinite liquid layer containing a small amount of impurities 
in the field of a plane, vertically incident acoustic wave. This is based on the concept of 
a cloud of particles as a continuous medium, which has been developed in [4] . 

I. We consider a layer of a viscous, incompressible liquid which has the kinematic 
viscosity coefficient v, an infinite depth, and a plane free surface. The liquid contains a 
cloud of spherical nondeformable particles with the same mass m and the radius r. It is 
assumed that the density of the particle material 0 ~ is much higher than the liquid density 
p. The volumetric percentage of particles is considered to be so low that the interaction 
between individual particles can be neglected. The Einstein correction of the liquid's ,, 
viscosity due to the presence of particles can then be neglected, as well as the buoyancy of 
particles, since these quantities are proportional to the volume concentration of the im- 
purity. The particles are sufficiently large, so that they do not participate in Brownian 
motion. The analysis is performed in a Cartesian coordinate system whose (x,y) plane coin- 
cides with the unperturbed interface, while the z axis points vertically upward. An acoustic 
wave is incident perpendicularly to the interface, exerting the pressure pO sin (mt + ~z/c~ 

For sufficiently light particles, when their settling and their motion caused by the 
radiation pressure can be neglected, the equilibrium condition is written thus [5, 6]: 

vo=O, Vet=O, po=_pgz_l_2pOsin(cot ~ OZc )' 
(1) 

po~=pO[sin(o~t + 9~0z__) +sin(tot oz )] cO , Pot -~ Norn,  

where v = (u, v, w), g = (0, O, --g) is the acceleration due to gravity, 0o(02) is the pres- 
sure in the half space z < 0 (z > 0), and Pea is the mean density of the particle cloud; 
the quantities marked by the subscript I pertain to the particle cloud. 

We shall investigate the stability of this equilibrium by introducing velocity and pres- 
sure perturbations in the usual manner. Using (~/0g)t/2, (~/0g3)I/~, (~g/o) t/~, and (~g0) t/2 
as the units of measurement for length, time, velocity, and pressure, respectively, we obtain 
for the perturbations the following linearized system of equations [4-9]: 
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Ov , ] v~ -- v 0 - 7 - - w = ~ v ' v + ~  ~o, vv=0, 

Ov, = v , - - - v  , Off, + poVvt = O, 
Ol x Ot 

where A = v - z a ~ / " / ( g 0 3 ) x / " ;  8o . t  ~ P o ~ . , / P ;  flo _ oo /p ;  w -: (2/9)  8~ a i s  the  d i m e n s i o n l e s s  
time required for the particle velocity reiative to the liquid to be reduced by the factor 
e in comparison with its initial value; 7 - (3/3x, 3/3y, 3/3z). 

In the case of a small shift of the liquid surface from the equilibrium position ~, the 
following expressions must be satisfied at the liquid surface (i.e., for z = 0) [6]: 

w + I~oW, = (I + 1~o) --, 
Ot 

Ou Ow do Ow 
- -  --=0, - - + - - = 0 ,  (3) 

Oz + Ox Oz Oy 

p =  1 - -  ~ + - ~  qcosfit g +  A ~ z  ' 

where q : 2f~P~ 

For z + -~, 

(2) 

v--~O, r icO.  (4) 

(3) terms of the order of q7~, which are small in comparison with We have neglected in 
the ~q~ terms, i.e., we assume that the surface oscillations occur with small wave numbers. 

By performing Fourier transformation with respect to the x and y variables and the La- 
place transformation with respect to time, eliminating the x and y components of the velocity 
and the pressure, and assuming that the velocity perturbations and the shifts are equal to 
zero at the initial instant of time and that v, ~ + 0; 3v/3x, 3v/3y, ~/3x, ~/3y + 0 for 
Ix,yl + ~, we obtain the following instead of (2)-(4>: 

( 1 ~ ( ~ I( ~ --~l~(s)=0, - - ~  W(s)--As  1 + 1 + ~  
dz2 . d z ~  . 

(5) 

For z = O, we have 

ll%(s) = W(s) / (1  + s O ,  sp, + P0vV, = 0 .  

W ( s ) + l S o W l ( s ) = s ( 1  + ~ ~  a~W(s) + k i W ( s ) = 0 ,  
dz z (6) 

a~ 3/~) 1 dW(s) ~ 

where ~ ; k 3 + k; k = (kx,  ky) i s  t h e  wave v e c t o r  and W(s),  u  and Z(s)  a r e  t h e  L a p l a c e  
t r a n s f o r m s  of  the  q u a n t i t i e s  w ( t ) ,  v ( t ) ,  and ~ ( t ) ,  r e s p e c t i v e l y ,  

For z +--~, 

W(s)--,.O, Wi(s) -..0. (8) 
By s o l v i n g  the  sys t em o f  e q u a t i o n s  (5) f o r  c o n d i t i o n s  (6) and (8) ,  we o b t a i n  t he  f o l l o w -  

ing  e x p r e s s i o n s  f o r  W(s) and Wt ( s ) :  

(1 +~~ (x) .Is + Anik"(~) J] exp (kz) 2ki(1An ~+ ~o) Z ( s ) (~ )  . exp(VkzWAsn(x}z), (9) W (s) 

W, (s) = le (s)/(1 + s~), n ('0 --- 1 + ~, / (1 + ~). 

By substituting the solution (9) in Eq. (7), we obtain the following for Z(s): 
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s + _ [z (s + in) + z (s - i,)] = 0 
A'.n2 ('0 1 + ~ol 2 (1 O) 

2. In the case of particles with a small radius R (small values of T), we expand Eq. 
(I0) in a Taylor series and retain only the linear approximation with respect to T. After 
performing inverse Laplace transformation, we obtain the following equation for 5(t) with an 
accuracy to RI: 

[ ~ +~_2V_ qk c o s ~ t ] ~ -  
+ Lr 0 1+ dF 

(11) 
' [  d~ (t --  ~) a~ (t -- x) ] d• ( ] , ~ )  

-- ~ el + e2 o =0 ,  

where 6 -= 2 k l / A ( t  + Bo); u z 4klBoB~ + Bo)2; e: =- r  e2 -= 3 y ~ t / 2 / r  

E q u a t i o n  (I 1) c o n s t i t u t e s  a m o d i f i c a t i o n  o f  t he  Ma t h i e u  f u n c t i o n  [ I 0 ] .  We s h a l l  i n v e s -  
t i g a t e  i t  in  t he  ne ighbo rhood  of  t he  f i r s t  i n s t a b i l i t y  zone c o r r e s p o n d i n g  to  t h e  ma jo r  r e s o -  
nance  l o c a t e d  n e a r  ~o = ~ /2 .  So lv ing  (11) by u s i n g  the  a v e r a g i n g  method [11] ,  we o b t a i n  t h e  
f o l l o w i n g  r e l a t i o n s h i p  f o r  the  b o u n d a r i e s  o f  the  i n s t a b i l i t y  r e g i o n :  

q~l(1 + fJ'~) k -2 [28 (1 - -  ?) fl - -  etQ ' / 2 -  eaQS/ll~ - -  [2Q2~ +[25(1~~ --_~l)~_etQl/2_el~S/2]  2 4 7  - -  el{) 1/2 - -  e~S/~/2 - -  ~)2/212 = 1, (12) 

which c o n s t i t u t e s  the  e q u a t i o n  of  a h y p e r b o l a  in t he  p l a n e  o f  the  p a r a m e t e r s  q and flo z.  I t  
c h a r a c t e r i z e s  t h e  s h i f t  of b o u n d a r i e s  of  t h e  i n s t a b i l i t y  r e g i o n  and the  m a g n i t u d e  o f  t h i s  
s h i f t  a s  a f u n c t i o n  of  t he  l i q u i d ' s  v i s c o s i t y .  A n a l y s i s  of  (12) i n d i c a t e s  t h a t  wave e x c i t a -  
t i o n  a t  the  s u r f a c e  o f  a d rop  r e s u l t i n g  in i t s  f r a g m e n t a t i o n  o c c u r s  i f  

4kQ {1 k(A~)- ' /~ r 4k~~176 + k(QA)'/~ ~~176 ] R J .  (13) 
q"~q* - A (1 +~0) '/2 L9(l+~0) z 3(1 +D0) s/2 

O s c i l l a t i o n s  c h a r a c t e r i z e d  by the  wave number k occur  in t h i s  case .  

The wave number k ,  o f  the  most r e a d i l y  e x c i t a b l e  waves a t  t he  s u r f a c e  i s  found from the  
condition 3q/3k = 0, whence k, is determined by using the expression 

k~ + k ,  8k~0~~ 2 ~2~ ( I  R 2 ) 
1 + ~ o  9(1+~0)  ~ - - ~  + O  A ' At/2 " ( 1 4 )  

It follows from (13) t h a t  the  p r e s e n c e  of  suspended part icles (~o # 0) with a small 
r a d i u s  lowers  t h e  s t a b i l i t y  t h r e s h o l d  of  the  l iquid drop  in  c o m p a r i s i o n  w i t h  the  s i t u a t i o n  
where t h e r e  a r e  no p a r t i c l e s  (8o = 0) .  

3. In the case of large particles (large values of r), we obtain the following equation 
for ~(t) with an accuracy to R -= after expanding Eq. (I0) in a Taylor series, retaining only 
the linear approximation with respect to r -t , and performing the inverse Laplace transforma- 
tion: 

d~ +26~ d~ + [ ~2~ + ~ _  A~R ~ cos~t ~ - -  e~ + e ~ ( t - - •  + o = 0 ,  
, ~  dt [ 1 + f~o 1 +f~o dt (15) 

where 6t ~ 2k l /A;  ea -= r  e~ - 2 ( k / A t / ~ )  ~ - 27k~8o/A~/aRlB ~ 

S o l v i n g  t h i s  e q u a t i o n  by means o f  the  a v e r a g i n g  method [l l] in  t he  v i c i n i t y  o f  t h e  f i r s t  
i n s t a b i l i t y  r e g i o n ,  we o b t a i n  the  f o l l o w i n g  f o r  t he  b o u n d a r i e s  o f  t he  i n s t a b i l i t y  r e g i o n :  

q~l(t +~o)~k-Z[26,g~--e~ t/~ + 2edQ~/2] 2 -  [2fl~/(l +[~o)-t--36k~lAZRZ--PW2--esfl'/2--2edgtt/2] 2 = 1. (16) 
[261~ -- eafl~/~ + 2edfl~/~l ~ 

Hence we find that wave excitation at the liquid surface, characterized by the wave number k 
and the frequency ~/2, occurs if 

q>/q,  4kf~(1 + [5o) [1 k k ~ 13.5k[5o ] 
=- A (A~) ~/-----7 + (Ag~) s/~ (A~)S/lR~oj �9 (17) 

The wave number k ,  o f  t h e  most r e a d i l y  e x c i t a b l e  waves a t  t he  l i q u i d  s u r f a c e  i s  d e t e r -  
mined from the  e x p r e s s i o n  
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l+po A3/2 +o As/= , A z . . . .  4 (18) 

It follows from (17) that the presence of large suspended particles (Bo 4 0) raises the 
stability threshold of a liquid drop in comparison with the situation where no particles are 
present, which agrees with the conclusions reached in [9]. 

Since we solved the problem of disintegration of drops in an acoustic field in the 
linear appr~imation, while we did not determine the maximum wave amplitude at the surface, 
the conditions of wave excitation at the liquid surface (13) and (17) can be interpreted as 
the lower limit of drop disintegration. 

Thus, it is evident that the presence of small particles facilitates liquid dispersion, 
while large particles inhibit this process. This must be taken into account in calculating 
dispersers. 

NOTATION 

~, ~, coefficients of surface tension and kinematic viscosity, respectively; ~, ~, 
angular frequency and dimensionless frequency of the acoustic wave, respectively; ~o, natural 
frequency of the wave surface; 0, P,, and po, densities of the liquid, the particle cloud, 
and the particle material, respectively; 8,, dimensionless density of the particle cloud; 
8o, dimensionless initial density of the particle cloud; ~o, dimensionless density of the 
particle material; r, characteristic time of interaction between a suspended particle and the 
medium; 8, 61, and y, dissipative parameters; x, y, z, Cartesian coordinates; t, time; p, 
pressure; v = (u, v, w) and v, = (u,, v,, wl), velocity vectors of the liquid and the par- 
ticle cloud, respectively; kj, wave number along the j-th axis; pO, pO, dimensional and di- 
mensionless amplitudes of the sonic wave, respectively; c ~ , c, velocity of sound in air and 
in the liquid, respectively; C, dimensionless velocity of sound in the liquid; m, particle 
mass; r, R, dimensional and dimensionless radii of a particle, respectively; No, N, mean and 
actual number of particles per unit volume; A, analog of the Reynolds number; q, small param- 
eter; s, parameter of the Laplace transform; Z(s), W(s), and V~(s), Laplace transforms for 
the shift of the surface from the equilibrium position, the z component of the liquid velo- 
city, and the velocity of the particle cloud. 
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